Comparing Daily Physiological and Psychological Benefits of Gratitude and Optimism Using a Digital Platform

David B. Newman¹, Amie M. Gordon², and Wendy Berry Mendes¹
¹ Department of Psychiatry and Behavioral Sciences, University of California, San Francisco
² Department of Psychology, University of Michigan

Gratitude and optimism are positive psychological dispositions associated with beneficial outcomes. To examine their associations with physiological and psychological experiences in daily life, we examined data from an Ecological Momentary Assessment study (N = 4,825), including blood pressure, heart rate, and reports of stress, health behaviors, and thoughts. Trait gratitude and trait optimism both predicted lower heart rate and blood pressure, better sleep quality, more exercise, less stress, more positive expectations and reflections, and greater feelings of appreciation toward others. However, gratitude and optimism were not completely overlapping constructs: Gratitude was a stronger predictor of felt appreciation toward others and pleasantness when reflecting on the best part of the day, whereas optimism was a stronger predictor of sleep quality, lower stress, and lower unpleasantness when reflecting on the worst part of the day. These associations reveal both similar and differential influences of positive dispositions on psychological and physiological outcomes that provide insight into health consequences.

Keywords: gratitude, optimism, health, EMA, stress

Supplemental materials: https://doi.org/10.1037/emo0001025.supp

How people view the world can have important consequences for their health and well-being. Some people may have relatively positive outlooks on life, whereas others may not view the world through such rose-colored lenses. Positive outlooks can be characterized and defined in various ways and are often measured as individual differences or dispositions. Each disposition may provide unique and nuanced benefits, and they may interact in distinct ways. Two positive traits that share some similar characteristics, but also some unique aspects, are gratitude and optimism. In the current research, we examine the unique roles of dispositional gratitude and optimism in shaping daily physical and psychological experiences, behaviors, and thoughts.

Gratitude has been linked to various positive physical and psychological outcomes. As a primarily social emotion, gratitude fosters social relationships and can bind people together (Algoe, 2012; Gordon et al., 2012). Not surprisingly, gratitude has been positively associated with well-being (Wood et al., 2010), and experimental and longitudinal studies show that the link from gratitude to well-being is causal (Emmons & McCullough, 2003, 2004; Nezlek et al., 2017; Wood et al., 2010). Gratitude has also been associated with better subjective physical health (Hill et al., 2013).

Similar to other affective constructs, gratitude can be conceptualized as a state or trait (McCullough et al., 2002). Between-persons, people may vary in terms of how frequently or intensely they feel or express gratitude. Gratitude as a trait or disposition is characterized as a higher order factor of daily or momentary states (McCullough et al., 2002). When conceptualized as a trait, gratitude can be thought of as “a generalized tendency to recognize and respond with grateful emotion to the roles of other people’s benevolence in the positive experiences and outcomes that one obtains” (McCullough et al., 2002, p. 112). Others have considered dispositional gratitude to be akin to a more general positive outlook on life (Wood et al., 2010). That is, people can express gratitude to other people and can be grateful in general without expressing the sentiment to a particular person. In the present study, we measured gratitude with questions that captured people’s general tendencies to feel grateful toward others (e.g., “I am grateful to a wide variety of people”) as well as their general positive outlook on life (e.g., “I have so much in life to be thankful for”).
Like gratitude, optimism is considered a positive trait. It has been defined as a positive outlook or motivation about expectations regarding future events or prospects of one’s life (Carver & Scheier, 2014). Similar to gratitude, optimism has been positively associated with well-being and improved health (e.g., Carver et al., 2010). Given this similarity between the two dispositions, some studies that have examined the effects of gratitude have either compared the effects to optimism or have included optimism as an experimental condition along with gratitude (Dickerhoof, 2007; Lyubomirsky et al., 2011; Millstein et al., 2016). These studies have shown that gratitude and optimism are each associated with higher psychological well-being and greater adherence to health recommendations, which promote physical health.

The goal of the present study was to examine the individual and unique effects of dispositional gratitude and optimism on physical health (i.e., average levels of blood pressure and heart rate and self-reported health behaviors) and psychological thoughts and experiences (i.e., subjective stress and daily expectations and reflections) during daily life. To capture these daily experiences, we relied on an Ecological Momentary Assessment (EMA; Shiffman et al., 2008) method. At each check-in, participants first measured their heart rate and blood pressure (via an optic sensor on their phone) and then, depending on the check-in, responded to questions about their health behaviors, stress, and expectations for and reflections about their day.

We capitalized on several advantages that EMA methods provide. For instance, participants did not need to rely on extensive recall because the questions referred to the present moment or day. Methods that use single assessments often require participants to rely heavily on their memory of how they felt or what they experienced in the past, and these recollections are often fraught with biases and heuristics (Bradburn et al., 1987; Schwarz, 2012). Another advantage of EMA methods is that the repeated assessments over time provide a random sample of time points of a person’s life. These time points are considered ecologically valid as they capture moments in natural contexts (Bolger et al., 2003; Brunswik, 1956). These moments that provide a snapshot of people’s lives can portray a picture that looks different from self-report assessments people make about their lives at one time (Newman et al., 2021). Moreover, physiological states captured during the natural ebb and flow of daily life may characterize people more accurately than measurements taken at one time in a doctor’s office or research laboratory. Previous studies have yielded mixed or weak effects of positive traits on daily life, perhaps because much of the research on dispositional gratitude and optimism has relied on single assessment methods (and often with small sample sizes) to examine well-being and health behaviors (e.g., Jans-Beken et al., 2020). The present research has the potential to clarify these prior findings due to the large sample and methodological advantages provided by EMA.

In addition to methodological advantages provided by EMA, we aimed to advance the theoretical understanding of the nature of gratitude and optimism by examining unique predictive effects in daily life. We propose that gratitude and optimism will predict lower average levels of blood pressure and heart rate, better self-reported health behavior, lower stress, and more positive daily expectations and reflections given the positive nature of these constructs. Gratitude and optimism require people to focus on the positive attributes of their day. However, gratitude orient people to the present and recent past, whereas optimism orients people to the future (McCullough, 2002). Therefore, we anticipated that gratitude would be a stronger predictor of people’s reflections of the best and worst aspects of their day, whereas optimism would be a stronger predictor of people’s (future-oriented) expectations for the day. Gratitude also orients people toward others and the benefits they have bestowed to them, whereas optimism may orient people to themselves as they focus on their own specific future. Therefore, in a confirmatory manner, we expect that gratitude will be a better predictor of felt appreciation toward other people in daily life.

In addition to determining which disposition may be a stronger predictor of the daily outcomes, we sought to test the interactive or additive effects of trait gratitude and trait optimism. Prior work on positive traits such as gratitude and optimism tend to focus on them as distinct constructs, thus little is known about how they might function together. Therefore, the interactive analyses were exploratory in nature. We examined whether positive traits best fit an additive model, in which each trait builds on the other, conferring greater benefits. Alternatively, they could be represented by a different model in which having just one positive trait is enough to provide beneficial physical and psychological outcomes in daily life.

Method

Participants and Procedure

The study took place on a digital platform in the form of an app called MyBPLab (https://mybplab.com) that was initially offered via the Google Playstore in March 2019. A compatible phone (e.g., Samsung S9) with an embedded infrared optic sensor was required for participation, and the only way that users could measure their blood pressure from the embedded sensor was to download the app and join the study. The app allowed participants to measure their blood pressure at any time (e.g., on-demand) as well as measure their heart rate, blood pressure, and subjective states following notifications sent three times during the day. Participants received immediate feedback regarding their current heart rate and blood pressure levels as an incentive to participate, and when actively engaged in the study received summarized feedback of their stress and emotion reports at the end of the 21 days. In addition to measuring their heart rate and blood pressure, participants were asked a few questions at each check-in about their present situation, such as if they recently exercised and if they had experienced anything stressful since the last check-in. Participants were asked questions three times a day during three time-windows (7:00 a.m.–10:00 a.m.; 10:00 a.m.–4:00 p.m.; and 8:00 p.m.–11:00 p.m.). The study was intended to last for 21 days, but participants were allowed to continue after the 21-day period. The data collection is ongoing, but the data presented in this article included data that were recorded from March 15, 2019 until December 8, 2020, representing approximately 21 months of data collection. The study was approved by the Human Research Protection Program at the University of California, San Francisco (IRB #19-27169).

At each check-in, participants were asked a set of questions that remained the same each time. Additionally, different sets of rotating questions were presented to participants once a day (either in the

1 The primary analyses presented here—associations between optimism/ gratitude and daily psychological and physiological responses—did not differ meaningfully between those who participated before the onset of the Covid-19 pandemic and those who participated during the pandemic.
morning, afternoon, or evening) every third day. For example, participants were asked some questions about the best and worst part of their day in the evening every third day. This means that these questions were presented to participants 7 times over the course of the 21-day period.² Finally, participants had the opportunity to answer some questions assessing individual differences. These questions were assessed only once, and participants were allowed to complete as many or as few of these surveys as they pleased. For the present study, we were interested in participants who completed trait measures of gratitude and optimism.

Our dataset to address the current questions includes 4,825 participants (M_age = 42.79, SD = 13.25; 64.15% male, 34.46% female, 1.38% other). Participants were required to be at least 18 years or older and speak English fluently (confirmed by an English proficiency test presented prior to joining the study). A post hoc power analysis indicated we had sufficient power (80%) to detect effects as small as r = .04. The study was approved for global use, so we did not restrict participants based on geographic location. This noted, the app was based in the U.S., and other countries (i.e., the U.K., Australia, Canada, India, Singapore, Hong Kong, and New Zealand) offered the app on their Google Playstore, so the majority of participants were from those eight countries. See Table 1 for a full set of descriptive statistics.

Table 1
Participant Demographics

<table>
<thead>
<tr>
<th>Variable</th>
<th>N</th>
<th>Percentage</th>
<th>Gratitude M (SD)</th>
<th>Optimism M (SD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gender</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>2,826</td>
<td>64.15%</td>
<td>5.24 (1.17)</td>
<td>3.23 (0.75)</td>
</tr>
<tr>
<td>Female</td>
<td>1,518</td>
<td>34.46%</td>
<td>5.50 (1.13)</td>
<td>3.07 (0.79)</td>
</tr>
<tr>
<td>Other</td>
<td>61</td>
<td>1.38%</td>
<td>4.95 (1.39)</td>
<td>2.95 (0.83)</td>
</tr>
<tr>
<td>Age</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18–29 years old</td>
<td>740</td>
<td>16.89%</td>
<td>5.08 (1.23)</td>
<td>2.98 (0.75)</td>
</tr>
<tr>
<td>30–39 years old</td>
<td>1,108</td>
<td>25.30%</td>
<td>5.29 (1.13)</td>
<td>3.05 (0.77)</td>
</tr>
<tr>
<td>40–49 years old</td>
<td>1,206</td>
<td>27.53%</td>
<td>5.29 (1.18)</td>
<td>3.14 (0.73)</td>
</tr>
<tr>
<td>50–64 years old</td>
<td>1,046</td>
<td>23.88%</td>
<td>5.45 (1.16)</td>
<td>3.36 (0.75)</td>
</tr>
<tr>
<td>65+ years old</td>
<td>280</td>
<td>6.39%</td>
<td>5.80 (0.92)</td>
<td>3.57 (0.64)</td>
</tr>
<tr>
<td>Country</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>United States</td>
<td>2,711</td>
<td>62.36%</td>
<td>5.48 (1.16)</td>
<td>3.19 (0.79)</td>
</tr>
<tr>
<td>United Kingdom</td>
<td>512</td>
<td>11.78%</td>
<td>5.05 (1.19)</td>
<td>3.00 (0.80)</td>
</tr>
<tr>
<td>Australia</td>
<td>362</td>
<td>8.33%</td>
<td>5.15 (1.17)</td>
<td>3.24 (0.71)</td>
</tr>
<tr>
<td>Canada</td>
<td>307</td>
<td>7.06%</td>
<td>5.28 (1.09)</td>
<td>3.22 (0.72)</td>
</tr>
<tr>
<td>India</td>
<td>129</td>
<td>2.97%</td>
<td>4.85 (0.97)</td>
<td>3.15 (0.51)</td>
</tr>
<tr>
<td>Singapore</td>
<td>68</td>
<td>1.56%</td>
<td>5.11 (1.09)</td>
<td>3.20 (0.53)</td>
</tr>
<tr>
<td>Hong Kong</td>
<td>39</td>
<td>0.90%</td>
<td>4.84 (1.12)</td>
<td>3.14 (0.41)</td>
</tr>
<tr>
<td>New Zealand</td>
<td>24</td>
<td>0.55%</td>
<td>5.40 (1.27)</td>
<td>3.29 (0.58)</td>
</tr>
<tr>
<td>Other</td>
<td>195</td>
<td>4.49%</td>
<td>4.90 (1.08)</td>
<td>3.16 (0.65)</td>
</tr>
<tr>
<td>Education</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Elementary school (no high school)</td>
<td>116</td>
<td>2.71%</td>
<td>4.73 (1.24)</td>
<td>2.85 (0.71)</td>
</tr>
<tr>
<td>High school or GED</td>
<td>659</td>
<td>15.41%</td>
<td>5.01 (1.22)</td>
<td>3.01 (0.74)</td>
</tr>
<tr>
<td>Some college</td>
<td>1,041</td>
<td>24.34%</td>
<td>5.30 (1.21)</td>
<td>3.06 (0.80)</td>
</tr>
<tr>
<td>2-year Degree</td>
<td>487</td>
<td>11.39%</td>
<td>5.46 (1.11)</td>
<td>3.21 (0.76)</td>
</tr>
<tr>
<td>4-year Degree</td>
<td>1,018</td>
<td>23.80%</td>
<td>5.45 (1.08)</td>
<td>3.26 (0.73)</td>
</tr>
<tr>
<td>Graduate school</td>
<td>956</td>
<td>22.35%</td>
<td>5.49 (1.11)</td>
<td>3.33 (0.73)</td>
</tr>
<tr>
<td>Race/ethnicity</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Non-Hispanic White</td>
<td>2,878</td>
<td>65.84%</td>
<td>5.35 (1.16)</td>
<td>3.15 (0.79)</td>
</tr>
<tr>
<td>Non-Hispanic Black</td>
<td>178</td>
<td>4.07%</td>
<td>5.78 (1.14)</td>
<td>3.78 (0.76)</td>
</tr>
<tr>
<td>Non-Hispanic Asian</td>
<td>298</td>
<td>6.82%</td>
<td>5.03 (1.11)</td>
<td>3.21 (0.57)</td>
</tr>
<tr>
<td>Hispanic/Latino</td>
<td>454</td>
<td>10.39%</td>
<td>5.36 (1.16)</td>
<td>3.24 (0.75)</td>
</tr>
<tr>
<td>Multiple races</td>
<td>409</td>
<td>9.36%</td>
<td>5.21 (1.17)</td>
<td>3.17 (0.68)</td>
</tr>
<tr>
<td>Other</td>
<td>154</td>
<td>3.52%</td>
<td>5.21 (1.28)</td>
<td>3.09 (0.81)</td>
</tr>
</tbody>
</table>

² Sleep quality was initially asked every third day but was later included every day, which meant that some people answered this question more than 7 times over the course of the study.

Measures

Trait Measures

Trait gratitude was measured with the 6-item Gratitude Questionnaire (McCullough et al., 2002). Example items are “I have so much in life to be thankful for” and “I am grateful to a wide variety of people.” Responses were recorded on a 7-point scale (1 = strongly disagree, 7 = strongly agree; M = 5.33, SD = 1.17, Cronbach’s alpha = .83). Trait optimism was measured with the 6-item Life Orientation Test—Revised scale (Scheier et al., 1994). Example items include “In uncertain times, I usually expect the best” and “I’m optimistic about the future.” One filler item (“It’s easy for me to relax”) was included with the other items but was not scored. Responses were recorded on a 5-point scale (1 = strongly disagree, 5 = strongly agree; M = 3.18, SD = .77, Cronbach’s alpha = .78).

Physiologic Measures

At every check-in, we measured heart rate and systolic and diastolic blood pressure. Heart rate and blood pressure were obtained from the optic sensor embedded in the phone (Gordon & Mendes,
2021); the sole purpose of the optic sensor is to measure physiological levels. Participants were encouraged to calibrate their blood pressure preferably with an external cuff and could only view their blood pressure levels if they calibrated the sensor with an external source. We only include participants with calibrated blood pressure values. Of the participants who completed measures of gratitude and optimism, 72.9% provided calibrated data and 27.1% did not and were not included in these analyses. Among the people who calibrated their blood pressure, they recalibrated .97 (SD = 2.11) times on average over the course of the 21-day study.

Health Behaviors

Two items that were administered in the evening every third day were used to assess exercise. Participants were asked, “Today, how much time did you spend doing the following? Moderate physical activity (e.g., brisk walking, strength training, gentle swimming)? Vigorous physical activity (e.g., aerobics class, jogging, running, power walking, team sports)?” Responses were recorded on a 6-point scale (1 = none, 2 = less than 15 minutes, 3 = 15–29 minutes, 4 = 30–44 minutes, 5 = 45–60 minutes, 6 = more than 60 minutes). Every third morning, sleep quality was measured with a single item, “How would you rate the quality of your sleep last night?” Responses were recorded on a 4-point scale (1 = very bad, 2 = fairly bad, 3 = fairly good, 4 = very good).

Stress

Participants answered questions about stress at every check-in. Stress was measured with a single item, “Have you experienced any particularly stressful event since your last check-in?” (yes/no). If they answered yes, they were asked, “How stressful was it?” Responses were recorded on a 5-point scale (1 = not at all, 2 = a little bit, 3 = somewhat, 4 = moderately, 5 = extremely).

Expectations and Reflections

Every third day, participants answered questions about their expectations for the day, and gratitude felt toward a close other that day. To assess participants’ expectations for the day, they were asked in the morning, “To what extent are you dreading versus really looking forward to today’s events?” Responses were recorded on a 5-point scale (1 = really dreading, 2 = fairly dreading, 3 = neutral looking forward to, 4 = fairly looking forward to, 5 = really looking forward to).

To reflect on the best part of the day, participants were instructed in the evening as follows: “Think back on your day and remember the very best part of your day, the part of the day where you were the happiest, or proudest, or most content, or calmest, or living your day to its maximum potential. Think about that time for a few minutes and then answer the following questions:” They were asked, “what time of day was it?” “where were you?” and “who were you with?” The item of interest for present purposes was “Rate that time in terms of how much you enjoyed it.” Responses were recorded on a 10-point scale (1 = no enjoyment, 10 = greatest enjoyment). For the worst part of the day, participants were instructed as follows: “Think back on your day and zero in the very worst part of your day, the part of the day where you were unhappy, stressed, angry, bored, frustrated, overwhelmed, or simply just trying to get to the next thing. Think about that time for a few minutes and then answer the following questions:” They were similarly asked questions about the time of day, where they were, and who they were with. The question of interest was “How much did you dislike that time?” Responses were recorded on a 10-point scale (1 = very pleasant experience, 10 = very unpleasant experience). To assess participants’ appreciation for a close person in their life that day, they were asked, “To what extent did you feel very appreciative of this person today? Responses were recorded on a 10-point scale (1 = not at all, 10 = a lot).

Data Cleaning

One of the key strengths of an Ecological Momentary Assessment method is that it can capture thoughts, feelings, behaviors, and physiological states in naturalistic contexts (Shiffman et al., 2008). One of the assumptions is that the time points or check-ins constitute a reasonable and random sample of time points from someone’s life (Newman & Stone, 2019). If participants only complete a few check-ins, it creates a potentially biased sample of time points. In addition to this consideration, we wanted to take advantage of the large sample size and include as many participants as we could within reason. Because some of the questions were presented to participants seven times over the course of the 21-day period, we decided to drop data from participants who completed less than three check-ins for each variable. Doing so provided a reasonable sample of time points while still allowing us to capitalize on the large sample size. If we had required more completions, we would have drastically reduced the sample size. Moreover, the completion of just one or two check-ins does not seem to reasonably capture someone’s daily experiences (for discussions and examples of data cleaning decisions in EMA studies, see Nezlek, 2012; Nezlek et al., 2019). The descriptive statistics, including sample sizes for each variable, are presented in Table 2.

We eliminated extreme values of heart rate (<30 and >200), systolic blood pressure (<80 and >210), and diastolic blood pressure (<50 and >180). Blood pressure values were also omitted if the participant indicated they exercised within the last 30 minutes, given exercise acutely raises blood pressure. Moreover, in all analyses that examined between-person variation in blood pressure, we used calibrated data only.

The materials and data to reproduce these analyses are stored at osf.io/3bwsm.

Results

Analytic Plan

Because the data were nested in structure, we used multilevel modeling for the analyses. We nested check-ins within persons and used the lme4 package (Bates et al., 2015) in R for all analyses.

Descriptive Statistics

We began with unconditional models, which provide estimates of the means and variances of each variable. Most of physiological variables had more between-person variance than within-person variance, whereas most of the health behaviors, daily reflections and expectations, and stress had more within- than between-person variance (see

Prior to this question, participants were asked to think of a close person in their life and to list how much time they spent interacting with this person.
sented in Table 3. These analyses showed that gratitude predicted
frequency, less stress intensity, greater expectations for the day, higher
quality, more moderate and vigorous exercise, lower stress fre-
lower heart rate and systolic and diastolic blood pressure, better sleep

4 We additionally ran models that controlled for country. These models
yielded results that were very similar to those without controls. Given the
large number of variables in the model, we present analyses without them
for simplicity’s sake.

5 We used generalized linear mixed effects models for any model that
involved stress frequency because it was measured as a dichotomous
variable.

Table 2). Critical for our interests, there was substantial between-per-
son variance to examine between-person relationships.

Primary Analyses
To examine between-person effects of trait gratitude and opti-
mism on the daily or momentary variables, we entered trait grati-
tude and trait optimism as predictors at the person-level in
separate models. The trait predictors were standardized and
entered uncentered at level-2 to aid in the interpretation of the
effects. A 1-point increase in gratitude or optimism translates to an
increase in one standard deviation. The intercepts were allowed to
vary randomly as follows:

Check-in level: \(y_{ij} = \beta_{0j} + r_{ij} \)
Person level: \(\beta_{0j} = \gamma_{00} + \gamma_{01} (\text{trait gratitude or trait optimism}) + u_{0j} \)

Age, gender, and race/ethnicity predictors were additionally
included as control variables in all models. The coefficients are pre-

as the variance inflation factor scores ranged from 1.41 to 1.48. The
models were as follows:

Day level: \(y_{ij} = \beta_{0j} + r_{ij} \)
Person level: \(\beta_{0j} = \gamma_{00} + \gamma_{01} (\text{trait gratitude}) + \gamma_{02} (\text{trait optimism}) + u_{0j} \)

As can be seen in the right portion of Table 3, the effects of
gratitude and optimism were somewhat attenuated when both pre-
dictors were entered simultaneously in the models. We also com-
pared the strengths of the coefficients using the \texttt{multcomp} package
(Hothorn et al., 2008). Consistent with our hypotheses about the
nature of gratitude as a social-oriented emotion with a focus on the
past and present, trait gratitude was a stronger predictor of ratings
of the best part of the day and feelings of appreciation toward a
close other than was optimism. Contrary to our hypothesis about
the nature of optimism as a future-oriented outlook on life, trait
optimism was not a significantly stronger predictor of expectations
of the day than trait gratitude (although the effect was trending in
that direction). Interestingly, optimism was a stronger predictor of
sleep quality, ratings of unpleasantness of the worst part of the
day, and stress frequency and intensity than was gratitude.

Trait Interactions
We also examined interactions between trait gratitude and trait
optimism to determine if there were any additive effects on daily
outcomes. To do so, we added an interaction term at the trait level
to the prior models. There were significant interactions (although
some associations were small and may be unreliable) for heart rate,
Effect size estimates were calculated using a method explained by Rights and Sterba (2019). The expectations and reflections people were likely to think their worst part of the day was relatively unpleasant of the worst part of the day (a backward-looking perspective focused on a negative event). Specifically, highly optimistic people were likely to think their worst part of the day was relatively less unpleasant than were less optimistic people. Additionally, optimism was not a stronger predictor of positive expectations for the day. The latter finding may be due to the shorter future perspective here of a single day rather than a longer temporal window of months or years that is typically examined. Optimism was also a better predictor of sleep quality and stress frequency and intensity than gratitude.

Finally, we took a unique approach to studying positive traits and examined how gratitude and optimism worked together. We found that for some outcomes the benefits were additive (i.e., two main effects), but for others, gratitude and optimism interacted such that the beneficial effects of optimism on evaluations about the best part of the day and feelings of appreciation toward others were strongest among those high in trait gratitude. The opposite pattern was observed for heart rate and stress intensity. See Figure 1.

Discussion

Using a digital platform and EMA approach, we amassed a dataset of almost 5,000 participants and examined how positive psychological dispositions—gratitude and optimism—related to blood pressure, stress, and health behaviors in daily life. Both gratitude and optimism were associated with lower average heart rate and blood pressure, better sleep quality, more frequent exercise, lower stress, more positive expectations for the day and reflections on the day, and greater feelings of appreciation toward others. When entered together as predictors, gratitude was a stronger predictor of felt appreciation toward others and reflections of the best part of the day, as expected.

Contrary to our hypothesis that higher optimism would be associated with forward-looking responses and interpretations of positive events, optimism more than gratitude predicted the ratings of the unpleasantness of the worst part of the day (a backward-looking response focused on a negative event). Specifically, highly optimistic people were likely to think their worst part of the day was relatively

Table 3

<table>
<thead>
<tr>
<th>Outcome variable</th>
<th>Separate predictors</th>
<th>Simultaneous predictors</th>
<th>Comparison</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>b</td>
<td>t</td>
<td>p</td>
</tr>
<tr>
<td>Physiology</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heart Rate</td>
<td>-1.18</td>
<td>.73</td>
<td><.001</td>
</tr>
<tr>
<td>Systolic blood pressure</td>
<td>-1.12</td>
<td>3.93</td>
<td><.001</td>
</tr>
<tr>
<td>Diastolic blood pressure</td>
<td>-94</td>
<td>4.69</td>
<td><.001</td>
</tr>
<tr>
<td>Health behaviors</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sleep quality</td>
<td>.09</td>
<td>8.45</td>
<td><.001</td>
</tr>
<tr>
<td>Moderate physical exercise</td>
<td>.14</td>
<td>4.26</td>
<td><.001</td>
</tr>
<tr>
<td>Vigorous physical exercise</td>
<td>.10</td>
<td>3.63</td>
<td><.001</td>
</tr>
<tr>
<td>Stress</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stress frequency*</td>
<td>.87</td>
<td>6.45</td>
<td><.001</td>
</tr>
<tr>
<td>Stress intensity</td>
<td>-.05</td>
<td>3.73</td>
<td><.001</td>
</tr>
<tr>
<td>Expectations and reflections</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Expectations for day</td>
<td>.22</td>
<td>12.55</td>
<td><.001</td>
</tr>
<tr>
<td>Best part of day</td>
<td>.44</td>
<td>15.68</td>
<td><.001</td>
</tr>
<tr>
<td>Worst part of day</td>
<td>-.23</td>
<td>6.93</td>
<td><.001</td>
</tr>
<tr>
<td>Appreciation toward others</td>
<td>.65</td>
<td>14.37</td>
<td><.001</td>
</tr>
</tbody>
</table>

Note. In the far right columns, we created a contrast that subtracted optimism from gratitude. A positive value indicates that the gratitude coefficient is more positive than the optimism coefficient, and a negative value indicates that the optimism coefficient is more positive than the gratitude coefficient. Effect size estimates were calculated using a method explained by Rights and Sterba (2019). The r_b(t) statistic is analogous to the square root of the reduction in variance method initially described by Raudenbush and Bryk (2002), akin to a correlation. Due to space constraints, 95% confidence intervals are reported in supplemental Table 1.

*For the models that included stress frequency as a dichotomous outcome, we calculated odds ratios using a multilevel model for binomial outcomes (odds ratios and z statistics replace b and t statistics for this outcome).
was stronger than gratitude’s effect. This particular result dovetails nicely with a recent study showing that dispositional optimism buffers the negative effect of stress on negative feelings (Majeed et al., 2021). Taken together, these findings suggest that being optimistic about the future may hinder people from noticing or dwelling on the negative experiences of the day. Viewing negative events of the day as mildly unpleasant as opposed to horrible may allow people to realize the potential positive outcomes in the future. Although speculative, our results suggest that whereas gratitude focuses on highlighting the positive aspects of daily life, optimism focuses on minimizing the negative aspects of daily life.

Limitations and Future Directions

Some of the effect sizes were relatively modest or weak compared to some of the effects of gratitude and optimism on well-being and health in prior studies (McCullough et al., 2002; Wood et al., 2010). One reason for this could be because people were asked to reflect on their lives generally when they answered questions about gratitude and optimism, whereas they reflected on the present day or situation when answering questions about their health, stress, and evaluations about the day. The inputs that influence global evaluations about life differ from the inputs that influence thoughts about the present moment (Schwarz & Strack, 1999). Moreover, blood pressure and heart rate are not self-report measures and thus may reflect different processes. Much of the previous research that has reported stronger correlations between gratitude and well-being and health often relies on similar methods of measuring all constructs (e.g., McCullough et al., 2002). Another possibility is that some of the earlier studies may have reported somewhat exaggerated effect sizes. Recent meta-analyses have documented weak or mixed effects (Jans-Beken et al., 2020; Scheier et al., 2021).

Regarding future directions, it is worth highlighting that the primary analyses concerned between-person relationships in which gratitude and optimism were assessed at one time. Our data do not provide insights into the dynamic nature of gratitude and optimism as they vary over time within-persons. Between- and within-person relationships are mathematically independent and often
represents distinct psychological processes (Affleck et al., 1999; Nezlek, 2001). In future studies, researchers could fruitfully examine how daily or momentary states of gratitude and optimism relate to health behaviors, stress, evaluations of the day, and physiological reactions to these daily experiences. It would also behoove researchers in this area to continue to rely on heterogeneous methods to offset weaknesses with particular methods (e.g., McGrath, 1982).

One common concern with studying individual differences is the possible overlap with other relevant variables. For example, the effects of gratitude could be attributed to a general positive disposition as opposed to a specific grateful disposition. Controlling for other positive dispositions, such as positive affect, can mitigate these concerns. In this study, we found that some of the positive associations between gratitude and daily outcomes were better explained by levels of dispositional optimism. We also found that while optimism and gratitude operated largely independently of each other, there were several interactive effects. These findings shed light on the importance of considering positive dispositions in tandem in order to isolate the unique contributions of different dispositional tendencies. In future studies of gratitude and optimism, it could be beneficial to similarly consider potential confounds.

Conclusion

Using data from a large, diverse sample of adults, we found that dispositional gratitude and optimism were positively related to numerous physiological and psychological benefits in daily life. We surmise that some of the positive effects of gratitude that have been documented in prior studies may be partially attributed more generally to having a positive outlook on life, as some of the effects of gratitude were no longer significant after controlling for optimism. Our findings provide important advances to our understanding of gratitude and optimism by showing that gratitude contributes to accentuating the positive aspects of the day, whereas optimism functions by minimizing the negative aspects of the day.

References

